DVSA2800S Series # HIGH RELIABILITY HYBRID DC-DC CONVERTERS #### DESCRIPTION The DVSA series of high reliability DC-DC converters is operable over the full military (-55 °C to +125 °C) temperature range with no power derating. Unique to the DVSA series are robust and effective input and output filters which provide dramatically reduced input and output noise performance when compared to other manufacturers competing devices. Operating at a nominal fixed frequency of 450 kHz, these regulated, isolated units utilize a high speed magnetic feedback design and well controlled undervoltage lockout circuitry to eliminate slow start-up problems. These converters are designed and manufactured in a facility qualified to ISO9001 and certified to MIL-PRF-38534 and MIL-STD-883. This product may incorporate one or more of the following U.S. patents: 5,784,266 5,790,389 5,963,438 5,999,433 6,005,780 6,084,792 6,118,673 #### **FEATURES** - High Reliability - Very Low Output Noise - Wide Input Voltage Range: 15 to 50 Volts per MIL-STD-704 - Up to 6 Watts Output Power - Fault Tolerant Magnetic Feedback Circuit - NO Use of Optoisolators - Undervoltage Lockout - Indefinite Short Circuit Protection - Current Limit Protection - Industry Standard Pinout - High Input Transient Voltage: 80 Volts for 1 sec per MIL-STD-704A - Precision Projection Welded Hermetic Package - High Power Density: > 19 W/in³ - Custom Versions Available - Additional Environmental Screening Available - Meets MIL-STD-461C and MIL-STD-461D EMC Requirements When Used With a DVMA28 EMI Filter - MIL-PRF-38534 Element Evaluated Components - Space Applications should consider VPT's "S" Series of Radiation Tolerant Power Conversion Devices. Contact VPT for details **Figure 1** – DVSA2800S DC-DC Converter (Exact marking may differ from that shown) Sales Information: Phone: (425) 353-3010 Fax: (425) 353-4030 E-mail: votsales@votpower.cc 1 DVSA2800S-4.0 http://www.vptpower.com E-mail: vptsales@vptpower.com **SPECIFICATIONS** (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified) **ABSOLUTE MAXIMUM RATINGS** Input Voltage (Continuous) 50 Vpc Input Voltage (Transient, 1 second) 80 Volts Output Power¹ 6 Watts Power Dissipation (Full Load, Tcase = +125°C) 2.7 Watts ESD Rating per MIL-PRF-38534 2 Junction Temperature Rise to Case Storage Temperature +10°C -65°C to +150°C Lead Solder Temperature (10 seconds) 270°C Weight (Maximum) 15 Grams | Doromotor | Conditions | D | VSA283R3 | s | [| OVSA2805 | S | Unito | |--|--|-------|----------|-------|-------|----------|-------|-------------------| | Parameter | Conditions | Min | Тур | Max | Min | Тур | Max | Units | | STATIC | | | | | | | | | | INPUT | Continuous | 15 | 28 | 50 | 15 | 28 | 50 | V | | Voltage⁴ | Transient, 1 sec | - | - | 80 | - | - | 80 | V | | Current | Inhibited | - | 4 | 6 | - | 4 | 6 | mA | | Current | No Load | - | 45 | 60 | - | 45 | 60 | mA | | Ripple Current | Full Load, 20Hz to 10MHz | - | 25 | 50 | - | 30 | 50 | mA _{p-p} | | Inhibit Pin Input ⁴ | | 0 | - | 1.5 | 0 | - | 1.5 | V | | Inhibit Pin Open Circuit Voltage ⁴ | | 9.0 | 11.0 | 13.0 | 9.0 | 11.0 | 13.0 | V | | UVLO Turn On | | 12.0 | - | 14.8 | 12.0 | - | 14.8 | V | | UVLO Turn Off ⁴ | | 11.0 | - | 14.5 | 11.0 | - | 14.5 | V | | OUTPUT V _{out} | T _{CASE} = 25°C | 3.267 | 3.30 | 3.333 | 4.95 | 5.00 | 5.05 | V | | Voltage V _{OUT} | $T_{CASE} = -55^{\circ}C \text{ to } +125^{\circ}C$ | 3.25 | 3.30 | 3.35 | 4.925 | 5.00 | 5.075 | V | | Power ³ | | 0 | - | 4 | 0 | - | 5 | W | | Current ³ I _{OUT} | | 0 | - | 1.21 | 0 | - | 1.0 | Α | | Ripple Voltage V _{OUT} | Full Load, 20Hz to 10MHz | - | 10 | 30 | - | 10 | 30 | mV _{p-p} | | Line Regulation V _{OUT} | V _{IN} = 15V to 50V | - | 2 | 15 | - | 2 | 15 | mV | | Load Regulation V _{OUT} | No Load to Full Load | - | 20 | 50 | - | 15 | 50 | mV | | EFFICIENCY | | 62 | 65 | - | 65 | 68 | - | % | | LOAD FAULT POWER DISSIPATION | Overload ⁴ | - | - | 3.3 | 1 | - | 3.3 | W | | LOAD FAULT FOWER DISSIPATION | Short Circuit | - | - | 3 | - | - | 3 | W | | CAPACITIVE LOAD4 | | - | - | 1000 | 1 | - | 1000 | μF | | SWITCHING FREQUENCY | | 350 | 450 | 500 | 350 | 450 | 500 | kHz | | ISOLATION | 500 V _{DC} | 100 | - | - | 100 | - | - | ΜΩ | | MTBF (MIL-HDBK-217F) | AIF @ T _C = 55°C | - | 457 | - | • | 457 | - | kHrs | | DYNAMIC | | | | | | | | | | Load Step Output Transient V _{OUT} | Holf Lood to Full Lood | - | 200 | 300 | - | 200 | 500 | mV_{PK} | | Load Step Recovery ² | Load Step Recovery ² Half Load to Full Load | | 450 | 700 | - | 450 | 700 | μSec | | Line Step Output Transient ⁴ V _{OUT} | \/ 40\/ to 40\/ | - | 250 | 500 | - | 350 | 700 | mV_{PK} | | Line Step Recovery ^{2, 4} | $V_{IN} = 16V \text{ to } 40V$ | - | 600 | 1200 | - | 600 | 1200 | μSec | | Turn On Delay V _{OUT} | V 0V/4- 00V/ | - | 10 | 20 | - | 10 | 20 | mSec | | Turn On Overshoot | $V_{IN} = 0V \text{ to } 28V$ | - | 0 | 15 | - | 0 | 25 | mV_{PK} | Notes: 1. Dependant on output voltage. - 2. Time for output voltage to settle within 1% of its nominal value. - 3. Derate linearly to 0 at 135°C. - 4. Verified by qualification testing. **SPECIFICATIONS** (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified) #### **ABSOLUTE MAXIMUM RATINGS** Input Voltage (Continuous) 50 Vpc Input Voltage (Transient, 1 second) 80 Volts Output Power¹ 6 Watts Power Dissipation (Full Load, Tcase = +125°C) 2.7 Watts ESD Rating per MIL-PRF-38534 2 Junction Temperature Rise to Case +10°C Storage Temperature -65°C to +150°C Storage Temperature -65°C to Lead Solder Temperature (10 seconds) 270°C Weight (Maximum) 15 Grams | Parameter | Conditions | | OVSA2812 | S | [| DVSA2815S | | Units | |--|---|-------|----------|-------|--------|-----------|--------|-------------------| | Faraneter | Conditions | Min | Тур | Max | Min | Тур | Max | Ullits | | STATIC | | | | | | | | | | INPUT | Continuous | 15 | 28 | 50 | 15 | 28 | 50 | V | | Voltage⁴ | Transient, 1 sec | - | - | 80 | - | - | 80 | V | | Current | Inhibited | - | 4 | 6 | - | 4 | 6 | mA | | Current | No Load | - | 45 | 60 | - | 45 | 60 | mA | | Ripple Current | Full Load, 20Hz to 10MHz | - | 30 | 50 | - | 30 | 50 | mA _{p-p} | | Inhibit Pin Input ⁴ | | 0 | - | 1.5 | 0 | - | 1.5 | V | | Inhibit Pin Open Circuit Voltage ⁴ | | 9.0 | 11.0 | 13.0 | 9.0 | 11.0 | 13.0 | V | | UVLO Turn On | | 12.0 | - | 14.8 | 12.0 | - | 14.8 | V | | UVLO Turn Off ⁴ | | 11.0 | - | 14.5 | 11.0 | - | 14.5 | V | | OUTPUT V _C | $T_{CASE} = 25^{\circ}C$ | 11.88 | 12.0 | 12.12 | 14.85 | 15.0 | 15.15 | V | | Voltage V _c | $T_{CASE} = -55^{\circ}C \text{ to } +125^{\circ}C$ | 11.82 | 12.0 | 12.18 | 14.775 | 15.0 | 15.225 | V | | Power ³ | | 0 | - | 6 | 0 | - | 6 | W | | Current ³ I _C | UT | 0 | - | 0.5 | 0 | - | 0.4 | Α | | Ripple Voltage V _c | Full Load, 20Hz to 10MHz | - | 10 | 30 | - | 10 | 30 | mV_{p-p} | | Line Regulation V _C | $V_{IN} = 15V \text{ to } 50V$ | - | 2 | 15 | - | 2 | 15 | mV | | Load Regulation V _C | No Load to Full Load | - | 5 | 50 | - | 5 | 50 | mV | | EFFICIENCY | | 71 | 76 | - | 72 | 78 | - | % | | LOAD FAULT POWER DISSIPATION | Overload ⁴ | - | - | 3 | - | - | 3 | W | | LOAD I AGEI I GWER DIGGII ATION | Short Circuit | - | - | 3 | - | - | 3 | W | | CAPACITIVE LOAD4 | | - | - | 500 | - | - | 500 | μF | | SWITCHING FREQUENCY | | 350 | 450 | 500 | 350 | 450 | 500 | kHz | | ISOLATION | 500 V _{DC} | 100 | - | - | 100 | - | - | МΩ | | MTBF (MIL-HDBK-217F) | AIF @ $T_C = 55^{\circ}C$ | - | 457 | - | - | 457 | - | kHrs | | DYNAMIC | | | | | - | | | • | | Load Step Output Transient Vo | UT Light and to Full and | - | 300 | 700 | - | 300 | 700 | mV_{PK} | | Load Step Recovery ² | Half Load to Full Load | - | 200 | 400 | - | 200 | 400 | μSec | | Line Step Output Transient ⁴ V _C | UT | - | 700 | 1200 | - | 700 | 1300 | mV_{PK} | | Line Step Recovery ^{2, 4} | V _{IN} = 16V to 40V | - | 200 | 600 | - | 200 | 600 | μSec | | Turn On Delay Vo | UT | - | 10 | 20 | - | 10 | 20 | mSec | | Turn On Overshoot | $V_{IN} = 0V \text{ to } 28V$ | - | 0 | 50 | - | 0 | 50 | mV_{PK} | Notes: 1. Dependant on output voltage. - 2. Time for output voltage to settle within 1% of its nominal value. - 3. Derate linearly to 0 at 135°C. - 4. Verified by qualification testing. **SPECIFICATIONS** (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified) | ABSOLUTE MAXIMUM RATINGS | | | | |---|-----------|--------------------------------------|-----------------| | Input Voltage (Continuous) | 50 VDC | Junction Temperature Rise to Case | +10°C | | Input Voltage (Transient, 1 second) | 80 Volts | Storage Temperature | -65°C to +150°C | | Output Power ¹ | 6 Watts | Lead Solder Temperature (10 seconds) | 270°C | | Power Dissipation (Full Load, Tcase = +125°C) | 2.7 Watts | Weight (Maximum) | 15 Grams | | ESD Rating per MIL-PRF-38534 | 2 | | | | Dougneston | Conditions | D | DVSA285R2S | | | | |--|---|-------|------------|-------|-------------------|--| | Parameter | Conditions | Min | Тур | Max | Units | | | STATIC | | | | | | | | INPUT | Continuous | 15 | 28 | 50 | V | | | Voltage⁴ | Transient, 1 sec | - | - | 80 | V | | | Current | Inhibited | - | 4 | 6 | mA | | | Current | No Load | - | 45 | 60 | mA | | | Ripple Current | Full Load, 20Hz to 10MHz | - | 30 | 50 | mA _{p-p} | | | Inhibit Pin Input ⁴ | | 0 | - | 1.5 | V | | | Inhibit Pin Open Circuit Voltage ⁴ | | 9.0 | 11.0 | 13.0 | V | | | UVLO Turn On | | 12.0 | 1 | 14.8 | V | | | UVLO Turn Off ⁴ | | 11.0 | 1 | 14.5 | V | | | OUTPUT V _{OUT} | T _{CASE} = 25°C | 5.148 | 5.20 | 5.252 | V | | | Voltage V _{OUT} | $T_{CASE} = -55^{\circ}C \text{ to } +125^{\circ}C$ | 5.122 | 5.20 | 5.278 | V | | | Power ³ | | 0 | - | 5.2 | W | | | Current ³ I _{OUT} | | 0 | - | 1.0 | А | | | Ripple Voltage V _{OUT} | Full Load, 20Hz to 10MHz | - | 10 | 30 | mV _{p-p} | | | Line Regulation V _{OUT} | $V_{IN} = 15V \text{ to } 50V$ | - | 2 | 15 | mV | | | Load Regulation V _{OUT} | No Load to Full Load | - | 15 | 50 | mV | | | EFFICIENCY | | 65 | 68 | - | % | | | LOAD FAULT POWER DISSIPATION | Overload ⁴ | - | ı | 3.3 | W | | | LOAD FAULT FOWER DISSIFATION | Short Circuit | - | - | 3 | W | | | CAPACITIVE LOAD⁴ | | - | • | 1000 | μF | | | SWITCHING FREQUENCY | | 350 | 450 | 500 | kHz | | | ISOLATION | 500 V _{DC} | 100 | - | - | ΜΩ | | | MTBF (MIL-HDBK-217F) | AIF @ T _C = 55°C | - | 457 | - | kHrs | | | DYNAMIC | | - | | | | | | Load Step Output Transient V _{OUT} | Holf Lood to Full Lood | - | 200 | 500 | mV_{PK} | | | Load Step Recovery ² | Half Load to Full Load | - | 450 | 700 | μSec | | | Line Step Output Transient ⁴ V _{OUT} | \/ 46\/ to 40\/ | - | 350 | 700 | mV_{PK} | | | Line Step Recovery ^{2, 4} | $V_{IN} = 16V \text{ to } 40V$ | - | 600 | 1200 | μSec | | | Turn On Delay V _{OUT} | \\ 0\\ t= 00\\ | - | 10 | 20 | mSec | | | Turn On Overshoot | $V_{IN} = 0V \text{ to } 28V$ | - | 0 | 25 | mV_{PK} | | Notes: 1. Dependant on output voltage. 2. Time for output voltage to settle within 1% of its nominal value. 3. Derate linearly to 0 at 135°C. 4. Verified by qualification testing. ## **BLOCK DIAGRAM** Figure 2 ## **CONNECTION DIAGRAM** Figure 3 #### **INHIBIT DRIVE CONNECTION DIAGRAMS** **Figure 4** – Internal Inhibit Circuit and Recommended Drive (Shown with optional capacitor for turn-on delay) Figure 5 – Isolated Inhibit Drive (Shown with optional capacitor for turn-on delay) #### **EMI FILTER HOOKUP DIAGRAM** Figure 6 - Converter with EMI Filter #### **EFFICIENCY PERFORMANCE CURVES** (T_{CASE} = 25°C, Full Load, Unless Otherwise Specified) | V _{IN} = 16V | V _{IN} = 28V | V _{IN} = 40V | |-----------------------|-----------------------|-----------------------| | | | | Figure 7 – DVSA283R3S Efficiency (%) vs. Output Power (W) Figure 9 – DVSA2812S Efficiency (%) vs. Output Power (W) Figure 8 – DVSA2805S / DVSA285R2S Efficiency (%) vs. Output Power (W) Figure 10 – DVSA2815S Efficiency (%) vs. Output Power (W) #### **EMI PERFORMANCE CURVES** (T_{CASE} = 25°C, V_{IN} = +28V ±5%, Full Load, Unless Otherwise Specified) Figure 11 - DVSA2800S without EMI Filter Figure 12 - DVSA2800S with EMI Filter ## **PACKAGE SPECIFICATIONS** - BASEPLATE SURFACE #### NOTES: - 1. DIMENSIONAL LIMITS ARE ±0.005" UNLESS OTHERWISE STATED. - 2. CASE TEMPERATURE IS MEASURED ON THE CENTER OF THE BASEPLATE. - 3. MATERIALS: CASE: STEEL, GOLD OVER NICKEL PLATED. COVER: STEEL, NICKEL PLATED. PINS: ALLOY 52, GOLD OVER NICKEL PLATED. PIN SEALS: GLASS BOTTOM VIEW | Pin | Function | Pin | Function | |-----|----------|-----|----------| | 1 | +V OUT | 5 | INHIBIT | | 2 | OUT COM | 6 | 28V IN | | 3 | N/C | 7 | IN COM | | 4 | N/C | 8 | CASE | Figure 13 – Package and Pinout # **PACKAGE PIN DESCRIPTION** | Pin | Function | Description | | | | |-----|----------|---|--|--|--| | 1 | +V OUT | Positive Output Voltage Connection | | | | | 2 | OUT COM | Output Common Connection | | | | | 3 | N/C | No Connection | | | | | 4 | N/C | No Connection | | | | | 5 | INHIBIT | Logic Low = Disabled Output. Connecting the inhibit pin to input common causes converter shutdown. Logic High = Enabled Output. Unconnected or open collector TTL. | | | | | 6 | 28V IN | Positive Input Voltage Connection | | | | | 7 | IN COM | Input Common Connection | | | | | 8 | CASE | Case Connection | | | | ## **ENVIRONMENTAL SCREENING** (100% Tested Per MIL-STD-883 as referenced to MIL-PRF-38534) | Test | MIL-STD-883
Test Method, Condition | No Suffix
(Standard)
Non-QML
⑤ | /ES
(Extended)
Non-QML
⑤ | /H
(Class H) | /K
(Class K) | |------------------------------|--|---|-----------------------------------|-----------------|-----------------| | Non-Destructive
Bond Pull | TM2023 | • | • | •
(4) | • | | Internal Visual | TM2010, TM2017,
TM2032
(MIL-STD-750, TM2072,
TM2073) | • | • | • | • | | Temperature
Cycling | TM1010, Condition C
-65°C to 150°C, Ambient
TM1010, Condition B
-55°C to 125°C, Ambient | | • | • | • | | Constant
Acceleration | TM2001,3000g,Y1
Direction
TM2001,500g,
Y1 Direction | | • | • | • | | PIND ⑦ | TM2020, Condition A | | | | • | | Pre Burn-In
Electrical | 25°C | | | | • | | Burn-In | TM1015, 320 hrs,
125°C, Case Typ
TM1015, 160 hrs,
125°C, Case Typ
96 hrs, 125°C, Case Typ
24 hrs, 125°C, Case Typ | • | • | • | • | | Final Electrical | MIL-PRF-38534, Group A
Subgroups 1-6
-55°C, 25°C, 125°C ③ | | | • | • | | | MIL-PRF-38534, Group A
Subgroups 1 and 4
25°C | • | • | | | | Hermeticity
(Seal) | TM1014, Fine Leak,
Condition A2 or B1
TM1014, Gross Leak,
Condition C1 or B2
Gross Leak, Dip (1 x 10-3) | • | • | • | • | | Radiography ® | TM2012 | | | | • | | External Visual | TM2009 | • | • | • | • | Notes: Contact Sales for more information concerning additional environmental screening and testing options desired. VPT Inc. reserves the right to ship higher screened or SMD products to meet lower screened orders at our sole discretion unless specifically forbidden by customer contract. 100% R&R testing with all test data included in product shipment. Not required per MIL-PRF-38534. Test is performed for additional product quality assurance. Non-QML products may not meet all requirements of MIL-PRF-38534. Note intentionally not used. PIND test Certificate of Compliance included in product shipment. Radiographic test Certificate of Compliance and film(s) or data CD included in product shipment. # **ORDERING INFORMATION** (1) (2) (3) | Product Series | | al Input
tage | Output | Voltage | Number o | f Outputs | |----------------|----|------------------|------------------------------|---|----------|-----------| | DVSA | 28 | 28 Volts | 3R3
05
5R2
12
15 | 3.3 Volts
5 Volts
5.2 Volts
12 Volts
15 Volts | S | Single | (5) | Screenin | g Code ^{1,2} | Additional Screening
Code | |--------------------------------|--|------------------------------| | None
/ES
/HB
/H
/K | Standard
Extended
HB
Class H
Class K | Contact Sales | Notes: - 1. Contact the VPT Inc. Sales Department for availability of Class H (/H) or Class K (/K) qualified products. - 2. VPT Inc. reserves the right to ship higher screened or SMD products to meet lower screened orders at our sole discretion unless specifically forbidden by customer contract. Please contact your sales representative or the VPT Inc. Sales Department for more information concerning additional environmental screening and testing, different input voltage, output voltage, power requirement, source inspection, and/or special element evaluation for space or other higher quality applications. # SMD (STANDARD MICROCIRCUIT DRAWING) NUMBERS | Standard Microcircuit Drawing (SMD) | DVSA2800S Series
Similar Part Number | |-------------------------------------|---| | 5962-0324101HXC | DVSA283R3S/H | | 5962-0324101HXA | DVSA283R3S/H-E | | 5962-0324101KXC | DVSA283R3S/K | | 5962-0324101KXA | DVSA283R3S/K-E | | 5962-0324102HXC | DVSA2805S/H | | 5962-0324102HXA | DVSA2805S/H-E | | 5962-0324102KXC | DVSA2805S/K | | 5962-0324102KXA | DVSA2805S/K-E | | 5962-0324103HXC | DVSA285R2S/H | | 5962-0324103HXA | DVSA285R2S/H-E | | 5962-0324103KXC | DVSA285R2S/K | | 5962-0324103KXA | DVSA285R2S/K-E | | 5962-0324104HXC | DVSA2812S/H | | 5962-0324104HXA | DVSA2812S/H-E | | 5962-0324104KXC | DVSA2812S/K | | 5962-0324104KXA | DVSA2812S/K-E | | 5962-0324105HXC | DVSA2815S/H | | 5962-0324105HXA | DVSA2815S/H-E | | 5962-0324105KXC | DVSA2815S/K | | 5962-0324105KXA | DVSA2815S/K-E | Do not use the DVSA2800S Series similar part number for SMD product acquisition. It is listed for reference only. For exact specifications for the SMD product, refer to the SMD drawing. SMD's can be downloaded from the DLA Land and Maritime (Previously known as DSCC) website at https://landandmaritimeapps.dla.mil/programs/defaultapps.asp. The SMD number listed above is for MIL-PRF-38534 Class H screening, standard gold plated lead finish, and no RHA (Radiation Hardness Assurance) level. Please reference the SMD for other screening levels, lead finishes, and radiation levels. All SMD products are marked with a "Q" on the cover as specified by the QML certification mark requirement of MIL-PRF-38534. #### **CONTACT INFORMATION** To request a quotation or place orders please contact your sales representative or the VPT Inc. Sales Department at: **Phone**: (425) 353-3010 **Fax**: (425) 353-4030 **E-mail**: vptsales@vptpower.com All information contained in this datasheet is believed to be accurate, however, no responsibility is assumed for possible errors or omissions. The products or specifications contained herein are subject to change without notice.