

HIGH RELIABILITY HYBRID RADIATION TOLERANT DC-DC CONVERTERS

DESCRIPTION

The SVFL series of high reliability DC-DC converters is operable over the full military temperature range (-55 °C to +125 °C) with no power derating. Paramount to the SVFL series is a magnetic feedback circuit that is radiation immune. Operating at a nominal fixed frequency of 525 kHz, these regulated, isolated units utilize well controlled undervoltage lockout circuitry to eliminate slow start-up problems. The current sharing function allows a maximum of five units to be connected in parallel to boost the total output power to 5 times.

The SVFL series is specifically designed for the harsh radiation environment of space applications. Performance is guaranteed through the use of hardened semiconductor components, radiation lot acceptance testing (RLAT) of non-hardened components and analysis. The SVFL series has been characterized for Total Ionizing Dose (TID) performance including Enhanced Low Dose Rate Sensitivity (ELDRS) and for Single Event Effects (SEE) according to VPT's DLA approved Radiation Hardness Assurance (RHA) plan per MIL-PRF-38534, Appendix G. Characterization is performed at both the component level and at the SVFL series hybrid converter level.

These converters are designed and manufactured in a facility qualified to ISO9001 and certified to MIL-PRF-38534 Class H and Class K and MIL-STD-883.

This product may incorporate one or more of the following U.S. patents:

5,784,266 5,790,389 5,963,438 5,999,433 6,005,780 6,084,792 6,118,673

FEATURES

- Guaranteed TID Performance to 30 krad(Si) including ELDRS, per VPT's RHA plan specified per MIL-PRF-38534, Appendix G, Level P with 2X margin.
- Characterized to 44 MeV-cm²/mg with minor transients only; no dropouts, shutdowns, latch up or burn out.
- High Reliability
- Parallel Up to 5 Units With Current Sharing
- Output Voltage Trim Up +10% or Down –20%
- Wide Input Voltage Range: 16 to 40 Volts per MIL-STD-704
- Up to 120 Watts Output Power
- Radiation Immune Magnetic Feedback Circuit
- NO Use of Optoisolators
- Undervoltage Lockout
- Current Limit and Short Circuit Protection
- High Input Transient Voltage: 50 Volts for 1 sec per MIL-STD-704A
- Precision Seam Welded Hermetic Package
- High Power Density: > 80 W/in³
- Custom Modified Versions May Be Available
- Additional Environmental Screening Available
- Meets MIL-STD-461 Revisions C, D, E and F EMC Requirements When Used With VPT's EMI Filters
- MIL-PRF-38534 Element Evaluated Components
 Utilized

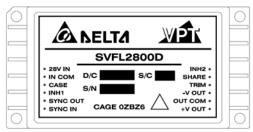


Figure 1 – SVFL2800D DC-DCConverter (Exact marking may differ from that shown)

¹Subject to all export restrictions and export regulations including but not limited to the Export Administration and Foreign Assets Control Regulations. Further restrictions may apply contact VPT for details.

> 11314 4th Avenue West, Suite 206 Everett, WA 98204 http://www.vpt-inc.com

Sales Information: Phone: (425) 353-3010 Fax: (425) 353-4030 E-mail: vptsales@vpt-inc.com

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V \pm 5%, Full Load⁵, Unless Otherwise Specified)

ABSOLUTE MAXIMUI		GS								
Input Voltage (Continuous) $40 V_{DC}$ Input Voltage (Transient, 1 second) $50 Volts$ Output Power ¹ $120 Watts$ Power Dissipation (Full Load, $T_{CASE} = +125^{\circ}C$) $40 Watts$			50 Volts 120 Watts	Junction Temperature Rise to Case Storage Temperature Lead Solder Temperature (10 seconds) Weight (Maximum) (No Pin Extensions)				+15°C -65°C to +150°C 270°C 88 Grams		
Parameter		Cond	litions ⁷	:	SVFL2805D)	(SVFL2812D	<u></u>	Units
				Min	Тур	Max	Min	Тур	Max	Unito
STATIC										
	ļ	Continuous		16	28	40	16	28	40	V
Voltage ⁴		Transient, 1 s	sec	-	-	50	-	-	50	V
	I	Inhibited 1		-	1	3	-	1	3	mA
Current	I	Inhibited 2		-	40	70	-	40	70	mA
		No Load		-	75	160	-	90	160	mA
Ripple Current		Full Load ⁵ , 20	0Hz to 10MHz	-	30	80	-	35	80	mA _{p-p}
	I		End-of-Life	-	_	140	-	-	140	mA _{p-p}
INH1 Pin Input ⁴				0	-	1.5	0		1.5	V
INH2 Pin Input ⁴				0	-	1	0	-	1	V
INH1 Pin Open Circuit V	/oltage⁴			10.5	-	15	10.5	-	15	V
INH2 Pin Open Circuit V	/oltage ^₄			4	-	12	4	-	12	V
UVLO Turn On				14.5	-	16	14.5	-	16	V
UVLO Turn Off ⁴				13.5	-	15.5	13.5	-	15.5	V
	+V _{OUT}	T _{CASE} = 25°C		4.95	5.00	5.05	11.88	12.00	12.12	V
	+V _{OUT}	T _{CASE} = -55°C to +125°C		4.925	5.00	5.075	11.82	12.00	12.18	V
OUTPUT	+V _{OUT}		End-of-Life	4.89	-	5.10	11.66	-	12.28	V
Voltage⁵	-V _{OUT}	T _{CASE} = 25°C		4.80	5.00	5.20	11.80	12.00	12.20	V
	-V _{OUT}	T _{CASE} = -55°C		4.75	5.00	5.25	11.52	12.00	12.48	V
[-V _{OUT}	ONGL	End-of-Life	4.715	-	5.275	11.36	-	12.58	V
<u> </u>	Total			-	-	100	-		110	Ŵ
Power ^{3,6}	±V _{OUT}	Either Output	+	·	 _	70	_		77	W
Current ^{3,6}	±V _{OUT}	Either Output		-	-	14	_	-	6.4	A
Ripple Voltage	±V _{OUT}		0Hz to 10MHz	_	15	80	_	25	80	mV _{p-p}
	+V _{OUT}	$V_{IN} = 16V \text{ to } 4$		-	2	20	_	20	20	mV
Line Regulation	-V _{OUT}	$V_{IN} = 16V \text{ to } 4$		-	10	200	_	10	200	mV
	+V _{OUT}	No Load to F		-	10	100	-	2	120	mV
Load Regulation	-V _{OUT}	No Load to F		-	55	200	-	40	200	mV
Cross Regulation	-V _{OUT}	V1+ Load 30 ^o	0% - Load 70% 0% - Load 30%	-	260	450	-	220	450	mV
Voltage Trim		Full Load		-20	-	10	-20	-	10	%
Share Pin Voltage ⁴				2	-	4	2	-	4	V
EFFICIENCY		Full Load ⁵		73	79	-	79	85	-	%
		Overload ⁴	+	-	-	50	-	-	50	W
LOAD FAULT POWER DISS	SIPATION	Overload [*] Short Circuit		_		50	-		50	W

See notes next page.

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V \pm 5%, Full Load⁵, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS							
Input Voltage (Continuous)	$40 V_{DC}$	Junction Temperature Rise to Case	+15°C				
Input Voltage (Transient, 1 second)	50 Volts	Storage Temperature	-65°C to +150°C				
Output Power ¹	120 Watts	Lead Solder Temperature (10 seconds)	270°C				
Power Dissipation (Full Load, T_{CASE} = +125°C)	40 Watts	Weight (Maximum) (No Pin Extensions)	88 Grams				

Parameter		Conditions ⁷	SVFL2805D			;	SVFL2812D)	Units
		Conditions	Min	Тур	Max	Min	Тур	Max	Units
STATIC (continued)									
CAPACITIVE LOAD ⁴			-	-	500	-	-	500	μF
SWITCHING FREQUENCY			425	525	600	425	525	600	kHz
SYNC FREQUENCY RANGE		V _H – V _L = 5V Duty Cycle = 20% - 80%	500	-	600	500	-	600	kHz
ISOLATION		500 V _{DC} , T _{CASE} = 25° C	100	-	-	100	-	-	MΩ
MTBF (MIL-HDBK-217F)		SF @ T _C = 55°C	-	727	-	-	727	-	kHrs
DYNAMIC									
Load Step Output Transient	$\pm V_{\text{OUT}}$	Half Load to Full Load	-	130	400	-	260	500	тV _{РК}
Load Step Recovery ²			-	200	500	-	140	500	μSec
Line Step Output Transient ⁴	$\pm V_{\text{OUT}}$	1/1 = 161/1 = 101/1	-	300	600	-	600	1200	mV _{РК}
Line Step Recovery ^{2, 4}		V_{IN} = 16V to 40V	-	300	500	-	300	500	μSec
Turn On Delay ±V _{OUT}		$V_{IN} = 0V$ to 28V	-	5	20	-	5	20	mSec
Turn On Overshoot		$v_{\rm IN} = 0$ v to 20 v	-	0	25	-	0	50	тV _{РК}

Notes: 1. Dependant on output voltage.

2. Time for output voltage to settle within 1% of its nominal value.

3. Derate linearly to 0 at 135°C.

4. Verified by qualification testing.

5. Half load at $+V_{OUT}$ and half load at $-V_{OUT}$.

6. Up to 70% of the total power or current can be drawn from any one of the two outputs.

7. End-of-Life performance includes aging and radiation degradation and is within standard limits except where noted.

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load⁵, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS			
Input Voltage (Continuous) Input Voltage (Transient, 1 second)	40 V _{DC} 50 Volts	Junction Temperature Rise to Case Storage Temperature	+15°C -65°C to +150°C
Output Power ¹	120 Watts	Lead Solder Temperature (10 seconds)	270°C
Power Dissipation (Full Load, T _{CASE} = +125°C)	40 Watts	Weight (Maximum) (No Pin Extensions)	88 Grams
		SVFL2815D	

Parameter		Conc	litions ⁷		SVFL2815)	Units
l'ulunoter	oone		Min	Тур	Max	01113	
STATIC							
INPUT		Continuous		16	28	40	V
Voltage ⁴		Transient, 1	sec	-	-	50	V
		Inhibited 1		-	1	3	mA
Current		Inhibited 2		-	40	70	mA
		No Load	ransient, 1 sec hibited 1 hibited 2 o Load ull Load ⁵ , 20Hz to 10MHz End-of-Life CASE = 25°C CASE = 25°C to +125°C CASE = 25°C CASE = 25°C constant of the sec CASE = 25°C constant of the sec constant of the sec con	-	110	160	mA
Dinala Current		Full Load ⁵ , 2	0Hz to 10MHz	-	40	80	mA_{p-p}
Ripple Current			End-of-Life	-	-	140	mA _{p-p}
INH1 Pin Input ^₄				0	-	1.5	V
INH2 Pin Input ⁴				0	-	1	V
INH1 Pin Open Circuit \	/oltage ⁴			10.5	-	15	V
INH2 Pin Open Circuit	/oltage ⁴			4	-	12	V
UVLO Turn On				14.5	-	16	V
UVLO Turn Off ⁴				13.5	-	15.5	V
	+V _{OUT}	T _{CASE} = 25°C	:	14.85	15.00	15.15	V
OUTPUT	+V _{OUT}	$T_{CASE} = -55^{\circ}C$	C to +125°C	14.775	15.00	15.225	V
	+V _{OUT}		End-of-Life	14.565	-	15.355	V
Voltage⁵	-V _{OUT}	T _{CASE} = 25°C		14.80	15.00	15.20	V
	-V _{OUT}	T _{CASE} = -55°0	C to +125°C	14.40	15.00	15.60	V
	-V _{OUT}		End-of-Life	14.19	-	15.73	V
– 36	Total			-	-	120	W
Power ^{3,6}	±V _{OUT}	Either Outpu	t	-	-	84	W
Current ^{3,6}	±V _{OUT}	Either Outpu	t	-	-	5.6	А
Ripple Voltage	±V _{OUT}	Full Load ⁵ , 2	0Hz to 10MHz	-	30	80	mV _{p-p}
	+V _{OUT}	V_{IN} = 16V to	40V	-	2	20	mV
Line Regulation	-V _{OUT}	V_{IN} = 16V to	40V	-	10	200	mV
	+V _{OUT}	No Load to F	ull Load⁵	-	2	120	mV
Load Regulation	-V _{OUT}	No Load to F	ull Load⁵	-	30	200	mV
Cross Regulation	-V _{OUT}		% - Load 70% % - Load 30%	-	200	450	mV
Voltage Trim		Full Load		-20	-	10	%
Share Pin Voltage ⁴				2	-	4	V
EFFICIENCY		Full Load ⁵		80	85	-	%
		Overload ⁴		-	-	50	W
LOAD FAULT POWER DIS	SIPATION	Short Circuit		-	-	50	W

See notes next page.

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V \pm 5%, Full Load⁵, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS			
Input Voltage (Continuous)	$40 V_{DC}$	Junction Temperature Rise to Case	+15°C
Input Voltage (Transient, 1 second)	50 Volts	Storage Temperature	-65°C to +150°C
Output Power ¹	120 Watts	Lead Solder Temperature (10 seconds)	270°C
Power Dissipation (Full Load, T _{CASE} = +125°C)	40 Watts	Weight (Maximum) (No Pin Extensions)	88 Grams

Parameter		Conditions ⁷	:	SVFL2815D)	Units
Fardineter		Conditions	Min	Тур	Max	Units
STATIC (continued)						
CAPACITIVE LOAD ⁴			-	-	500	μF
SWITCHING FREQUENCY			425	525	600	kHz
SYNC FREQUENCY RANGE		V _H – V _L = 5V Duty Cycle = 20% - 80%	500	-	600	kHz
ISOLATION		500 V _{DC} , T _{CASE} = 25° C	100	-	-	MΩ
MTBF (MIL-HDBK-217F)		SF @ T _c = 55°C	-	727	-	kHrs
DYNAMIC						
Load Step Output Transient	$\pm V_{\text{OUT}}$	Half Load to Full Load	-	260	500	mV_{PK}
Load Step Recovery ²			-	110	500	μSec
Line Step Output Transient ⁴	$\pm V_{\text{OUT}}$	V _{IN} = 16V to 40V	-	600	1200	тV _{РК}
Line Step Recovery ^{2, 4}		v _{IN} - 10v 10 40V	-	300	500	μSec
Turn On Delay	$\pm V_{\text{OUT}}$	$V_{IN} = 0V$ to 28V	-	5	20	mSec
Turn On Overshoot		VIN - UV 10 20V	-	0	50	mV _{РК}

Notes: 1. Dependant on output voltage.

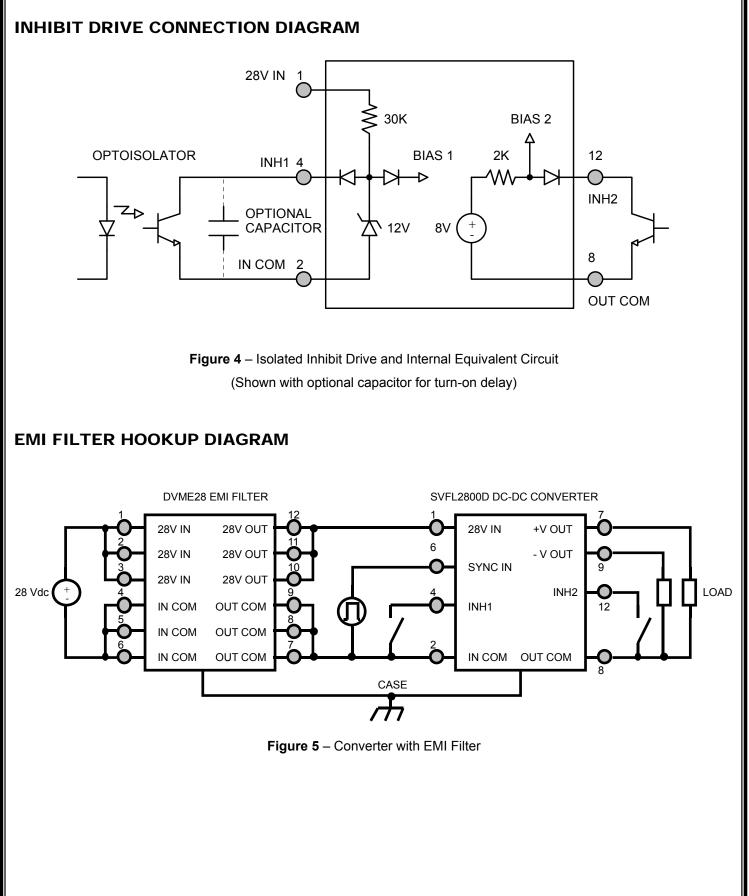
2. Time for output voltage to settle within 1% of its nominal value.

3. Derate linearly to 0 at 135°C.

4. Verified by qualification testing.

5. Half load at $+V_{OUT}$ and half load at $-V_{OUT}$.

6. Up to 70% of the total power or current can be drawn from any one of the two outputs.


7. End-of-Life performance includes aging and radiation degradation and is within standard limits except where noted.

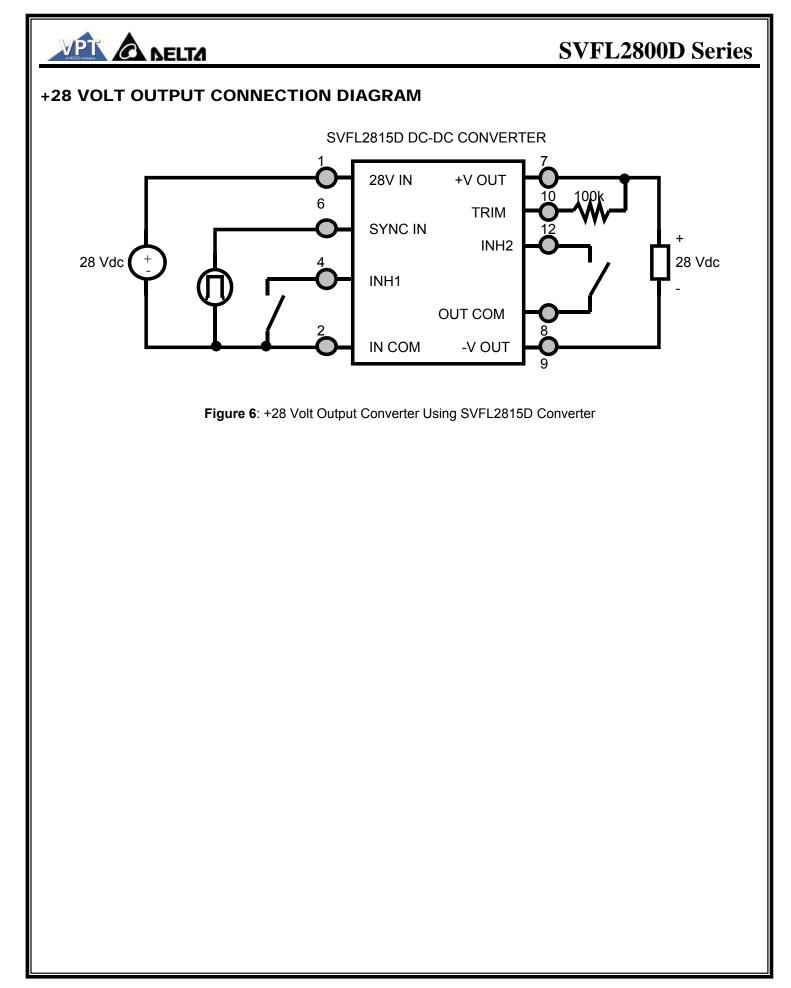
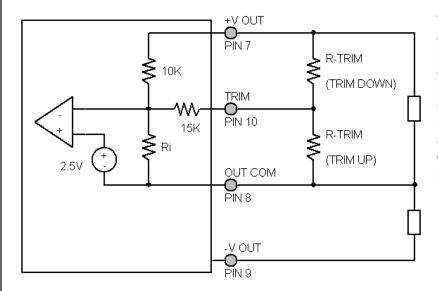
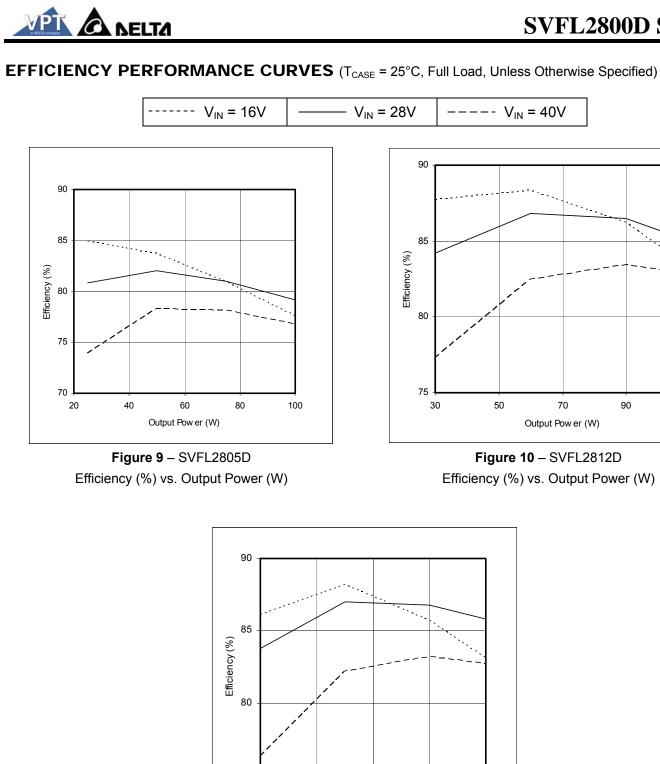

SVFL2800D Series BLOCK DIAGRAM PIN 7 -O +V OUT (• PIN 8 🜔 ООТ СОМ $\overline{\gamma}\gamma\gamma$ Δ PIN 1 28V IN O 🔵 -V OUT IN COM PIN 9 9|| PIN 2 Q1 ⋈ VOLTAGE AND PIN 10 CURRENT MAGNETIC FEEDBACK AMPLIFIERS UNDER VOLTAGE SHUTDOWN 3112 ◯ SHARE **PIN 11** O INH2 \downarrow **PIN 12** PWM PRIMARY Ŧ HOUSEKEEPING SUPPLY CONTROL SECONDARY HOUSEKEEPING SYNC IN O SUPPLY PIN 6 SYNC OUT 🔘 , PIN 5 Figure 2 **CONNECTION DIAGRAM** 1 +V OUT 28V IN 6 -V OUT SYNC IN 9 28 Vdc +LOAD INH2 4 INH1 12 2 IN COM OUT COM

Figure 3

8



SVFL2800D Series PARALLEL CONNECTION DIAGRAM DVME28 EMI FILTER SVFL2800D DC-DC CONVERTER 28V IN 28V OUT 28V IN +V OUT 6 28V IN 28V OUT SHARE \cap SYNC IN 28V IN 28V OUT 28 Vdc OUT COM IN COM OUT COM INH1 OUT COM SYNC OUT IN COM OUT COM IN COM IN COM -V OUT []] CASE CASE SVFL2800D DC-DC CONVERTER 28V IN +V OUT O 6 SHARE SYNC IN OUT COM INH1 SYNC OUT IN COM -V OUT \square CASE SVFL2800D DC-DC CONVERTER Ο 28V IN +V OUT Ο 6 11 SHARE SYNC IN OUT COM INH1 \cap IN COM -V OUT CASE Figure 7 – Current Sharing Parallel Connection for Multiple Converters


OUTPUT VOLTAGE TRIM

The output voltage can be trimmed down by connecting a resistor between the TRIM pin (PIN 10) and the +V OUT pin (PIN 7), or can be trimmed up by connecting a resistor between the TRIM pin (PIN 10) and the OUT COM pin (PIN 8). The maximum trim range is +10% up and -20% down. The appropriate resistor values versus the output voltage are given in the trim table below.

Figure 8 – Output Voltage Trim

SVFL	2805D	SVFL	2812D	SVFL	2815D
±V _{OUT} (V)	R _{TRIM} (Ω)	±V _{ουτ} (V)	R _{TRIM} (Ω)	±V _{ουτ} (V)	R _{TRIM} (Ω)
5.5	35k	13.2	5.8k	16.50	1.7k
5.4	47.5k	13.0	10k	16.25	5k
5.3	68.3k	12.8	16.2k	16.00	10k
5.2	110k	12.6	26.6k	15.75	18.3k
5.1	235k	12.4	47.3k	15.50	35k
5.0	-	12.2	109k	15.25	85k
4.9	225k	12.0	-	15.00	-
4.8	100k	11.8	454k	14.75	475k
4.7	58.3k	11.6	213k	14.50	225k
4.6	37.5k	11.4	134k	14.25	142k
4.5	25k	11.2	94k	14.00	100k
4.4	16.7k	11.0	70.1k	13.75	75k
4.3	10.7k	10.8	54.3k	13.50	58.3k
4.2	6.3k	10.6	42.9k	13.25	46.4k
4.1	2.8k	10.4	34.4k	13.00	37.5k
4.0	0	10.2	27.8k	12.75	30.6k
		10.0	22.5k	12.50	25k
		9.8	18.2k	12.25	20.5k
		9.6	14.6k	12.00	16.7k

90

110

Efficiency (%) vs. Output Power (W)

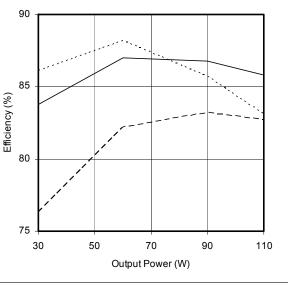
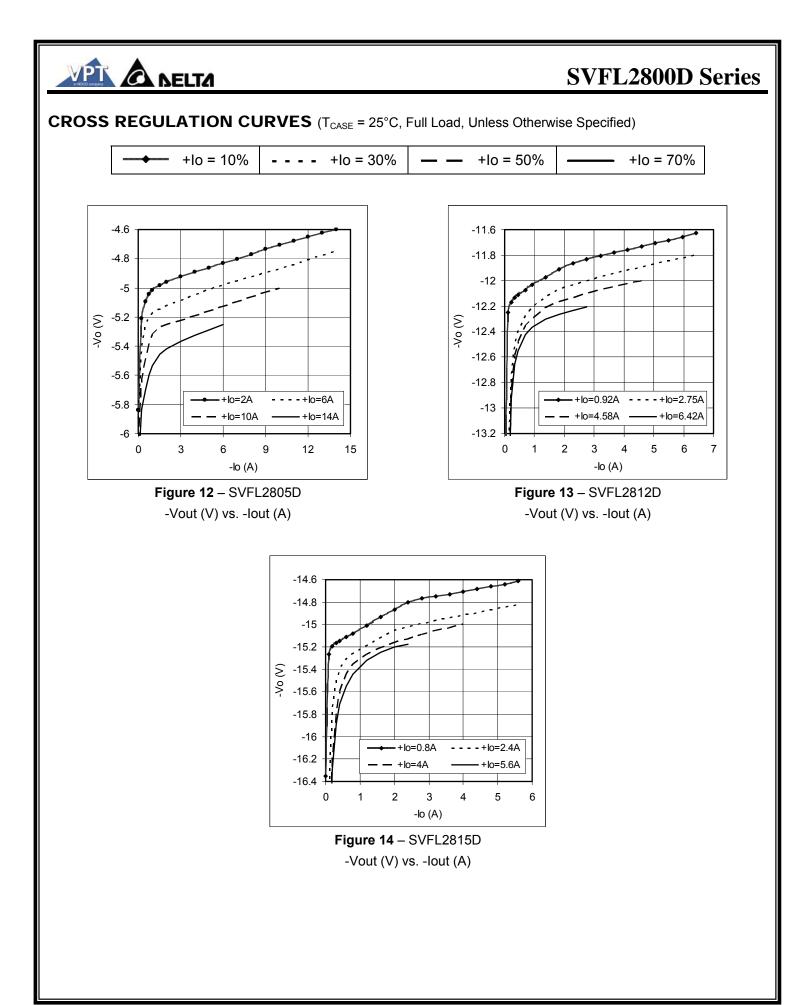
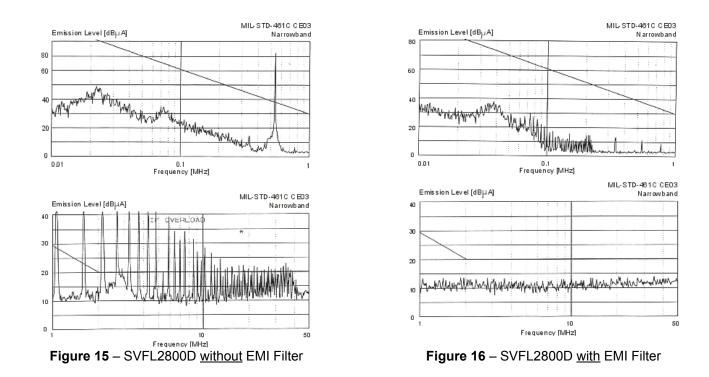




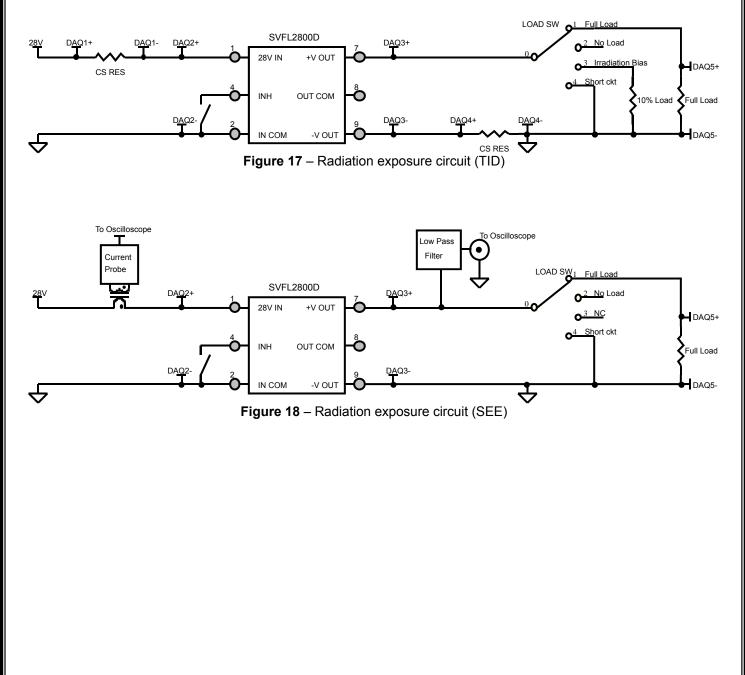
Figure 11 - SVFL2815D Efficiency (%) vs. Output Power (W)

EMI PERFORMANCE CURVES (T_{CASE} = 25°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified)

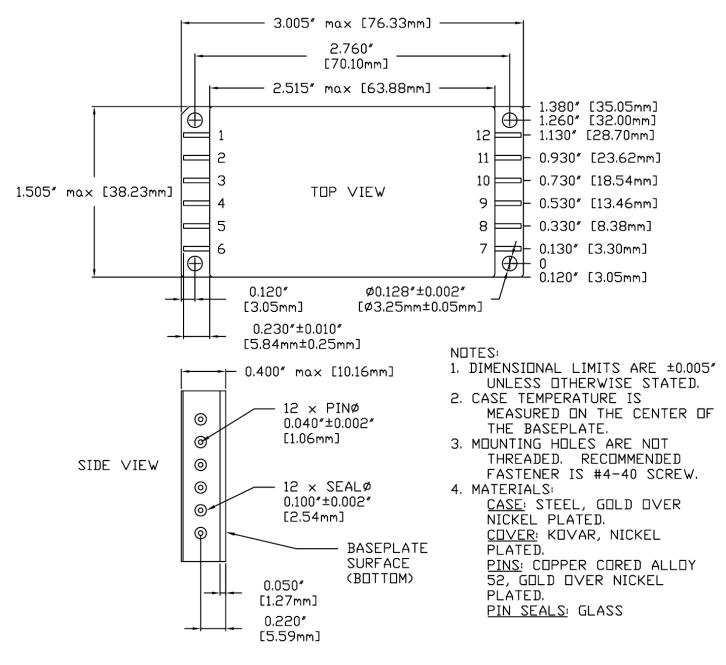
RADIATION HARDNESS ASSURANCE (RHA)

The SVFL series radiation performance is guaranteed through the use of hardened semiconductor components, radiation lot acceptance testing (RLAT) of non-hardened components, and characterization of the completed hybrid according to VPT's Radiation Hardness Assurance (RHA) plan per MIL-PRF-38534, Appendix G. Post radiation end of life performance limits are determined by worst case analysis.

As part of qualification, one representative model of the hybrid converter family is characterized for total ionizing dose (TID). TID is tested to 60 krad(Si). Subsequent performance is guaranteed to 30 krad(Si) by 2 times margin. Characterization is performed at high dose rate (HDR) in accordance with condition C (minimum dose rate of 30 rad(Si)/s) of method 1019 of MIL-STD-883, and at low dose rate (LDR) in accordance with condition D of method 1019 of MIL-STD-883. A minimum of 1 biased sample and 1 unbiased sample is tested. After radiation exposure, converter testing is performed at 25 °C per standard datasheet limits. The radiation exposure test circuit is given in Figure 17.


Also as part of qualification, one representative model of the hybrid converter family is characterized for Single Event Effects (SEE). The specific test LET is specified on the first page of the datasheet and is tested to a minimum fluence of 1×10^6 particles/cm². The characterization is performed at nominal input voltage at 25 °C in air. The radiation exposure test circuit is specified in Figure 18.

RADIATION HARDNESS ASSURANCE (continued)


Continued compliance is guaranteed by component testing and analysis. Critical semiconductor components, unless procured with manufacturer radiation guarantees, are subjected to RLAT at HDR in accordance with condition C of method 1019 of MIL-STD-883. Semiconductors which have been shown to exhibit ELDRS are subject to RLAT at LDR in accordance with condition D of method 1019 of MIL-STD-883. RLAT is not performed on inherently radiation hard semiconductor component technologies including zeners, diodes, and small signal BJTs.

RHA TEST CIRCUIT DIAGRAMS

PACKAGE SPECIFICATIONS

PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION
1	28V IN	4	INH1	7	+V OUT	10	TRIM
2	IN COM	5	SYNC OUT	8	OUT COM	11	SHARE
3	CASE	6	SYNC IN	9	-V OUT	12	INH2

Figure 19 - Package and Pinout

PACKAGE PIN DESCRIPTION

Pin	Function	Description
1	28V IN	Positive Input Voltage Connection
2	IN COM	Input Common Connection
3	CASE	Case Connection
4	INH1	Logic Low = Disabled Output. Connecting the inhibit(1) pin to input common causes converter shutdown. Logic High = Enabled Output. Unconnected or open collector TTL.
5	SYNC OUT	Output Synchronization Signal
6	SYNC IN	Input Synchronization Signal
7	+V OUT	Positive Output Voltage Connection
8	OUT COM	Output Common Connection
9	-V OUT	Negative Output Voltage Connection
10	TRIM	Trim Output Voltage to +10%, -20% of Nominal Value
11	SHARE	Current Share
12	INH2	Logic Low = Disabled Output. Connecting the inhibit(2) pin to output common causes converter shutdown. Logic High = Enabled Output. Unconnected or open collector TTL.

ENVIRONMENTAL SCREENING (100% Tested Per MIL-STD-883 as referenced to MIL-PRF-38534)

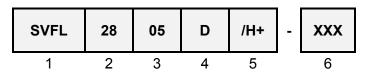
Screening	MIL-STD-883	Class H+ /H+	Class K /K	Engineering Model ⁵ /EM
Non-Destructive Bond Pull	Method 2023 ³	•	•	•
Internal Visual	Method 2017, 2032 Internal Procedure	•	•	•
Temperature Cycling	Method 1010, Condition C	•	•	
Constant Acceleration	Method 2001, 3000g, Y1 Direction	•	•	
PIND	Method 2020, Condition A ²	•	•	
Pre Burn-In Electrical	100% at 25°C		•	
Burn-In	Method 1015, 320 hours at +125°C Method 1015, 160 hours at +125°C 24 Hours at +125°C	•	•	•
Final Electrical	MIL-PRF-38534, Group A ¹ 100% at 25°C	•	•	•
Hermeticity	Method 1014, Fine Leak, Condition A Method 1014, Gross Leak, Condition C Dip (1×10^{-3})	•	•	•
Radiography	Method 2012 ⁶		•	
External Visual	Method 2009	•	•	•

Notes:

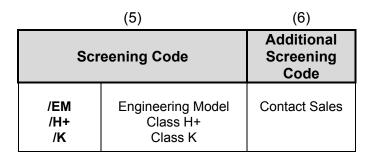
1. 100% R&R testing at –55°C, +25°C, and +125°C with all test data included in product shipment.

2. PIND test Certificate of Compliance included in product shipment. This is an additional screening test not required per MIL-PRF-38534, Class H.

3. Non-Destructive bond pull per Method 2023 performed. This is an additional screening test not required per MIL-PRF-38534, Class H.


4. Please contact your sales representative or the VPT Inc. Sales Department for more information concerning additional environmental screening and testing options desired.

5. Engineering models utilize only the standard screening specified and are not considered compliant for flight use.


6. Radiographic test Certificate of Compliance and film(s) included in product shipment.

ORDERING INFORMATION

(1)	(2	2)	(3)		(4)	
Product Series	Nominal Input Voltage		Output Voltage		Number o	f Outputs
SVFL	28	28 Volts	05 12 15	± 5 Volts ± 12 Volts ± 15 Volts	D	Dual

Note: Engineering models utilize only the standard screening specified and are not considered compliant for flight use. These models are intended for low volume engineering characterization. The customer must place the following statement on each line item of their purchase order(s) for /EM units when ordering engineering models:

"(<u>Customer Name</u>) acknowledges that the /EM unit listed in this line item is not permitted for flight use and will be used for Engineering characterization only."

Please contact your sales representative or the VPT Inc. Sales Department for more information concerning additional environmental screening and testing, different input voltage, output voltage, power requirement, source inspection, and/or special element evaluation for space or other higher quality applications.

SMD (STANDARD MICROCIRCUIT DRAWING) NUMBERS

Standard Microcircuit	SVFL2800D Series
Drawing (SMD)	Similar Part Number
5962P1121401HXC	SVFL2805D/H+
5962P1121401KXC	SVFL2805D/K
5962P1121402HXC	SVFL2812D/H+
5962P1121402KXC	SVFL2812D/K
5962P1121403HXC	SVFL2815D/H+
5962P1121403KXC	SVFL2815D/K

Do not use the SVFL2800D Series similar part number for SMD product acquisition. It is listed for reference only. For exact specifications for the SMD product, refer to the SMD drawing. SMDs can be downloaded from the DLA Land and Maritime (Previously known as DSCC) website at http://www.dscc.dla.mil/programs/smcr/. The SMD number listed above is for standard gold-plated lead finish and "P" RHA (Radiation Hardness Assurance) level. Please reference the SMD for other screening levels, lead finishes, and radiation levels. All SMD products are marked with a "Q" on the cover as specified by the QML certification mark requirement of MIL-PRF-38534.

CONTACT INFORMATION

To request a quotation or place orders please contact your sales representative or the VPT Inc. Sales Department at:

Phone:	(425) 353-3010
Fax:	(425) 353-4030
E-mail:	vptsales@vpt-inc.com

All information contained in this datasheet is believed to be accurate, however, no responsibility is assumed for possible errors or omissions. The products or specifications contained herein are subject to change without notice.